• sales

    +86-0755-88291180

5.83inch e-Paper HAT User Guide

Introduction

Note: The raw panel require a driver board, If you are the first time use this e-Paper, we recommend you to buy the HAT version or buy more one driver hat for easy use, otherwise you need to make the driver board yourself. And this instruction is based on the version with PCB or driver board.

600x448, 5.83inch E-Ink display HAT for Raspberry Pi, SPI interface

Interfaces

VCC3.3V
GNDGND
DINSPI MOSI
CLKSPI SCK
CSSPI chip select (Low active)
DCData/Command control pin (High for data, and low for command)
RSTExternal reset pin (Low for reset)
BUSYBusy state output pin (Low for busy)

Working principle

Introduction

This product is an E-paper device adopting the image display technology of Microencapsulated Electrophoretic Display, MED. The initial approach is to create tiny spheres, in which the charged color pigments are suspending in the transparent oil and would move depending on the electronic charge. The E-paper screen display patterns by reflecting the ambient light, so it has no background light requirement. Under ambient light, the E-paper screen still has high visibility with a wide viewing angle of 180 degrees. It is the ideal choice for E-reading. (Note that the e-Paper cannot support updating directly under sunlight)

Communication protocol


Note: Different from the traditional SPI protocol, the data line from the slave to the master is hidden since the device only has display requirement.

  • CS is slave chip select, when CS is low, the chip is enabled.
  • DC is data/command control pin, when DC = 0, write command, when DC = 1, write data.
  • SCLK is the SPI communication clock.
  • SDIN is the data line from the master to the slave in SPI communication.

SPI communication has data transfer timing, which is combined by CPHA and CPOL.

  1. CPOL determines the level of the serial synchronous clock at idle state. When CPOL = 0, the level is Low. However, CPOL has little effect to the transmission.
  2. CPHA determines whether data is collected at the first clock edge or at the second clock edge of serial synchronous clock; when CPHL = 0, data is collected at the first clock edge.
  • There are 4 SPI communication modes. SPI0 is commonly used, in which CPHL = 0, CPOL = 0.

As you can see from the figure above, data transmission starts at the first falling edge of SCLK, and 8 bits of data are transferred in one clock cycle. In here, SPI0 is in used, and data is transferred by bits, MSB first.

TAG: Arduino board manager tutorial User Guide Raspberry Pi Pico 2 RP2350 Pico2 ARM Cortex-M33 And RISC-V Hazard3 520KByte 4MByte QSPI Flash Raspberry Pi OpenWrt Tutorial 1 Computer STLINK ESP32-S3 Round Screen ESP32 S3 LCD Development Board 1.3 inch Display 1.3inch Screen ST7789 240x240 Mini TV SD-Port QST QMI8658 Gyro Sensor LVGL For Arduino Luckfox 1.3inch LCD Arduino MLX90640 GPS LCD Driver Board Raspberry Pi 5 RV1103 7inch-DSI-LCD-H User Guide 3.4inch Round LCD HDMI Capacitive Touchscreen Display 800x800 For Raspberry Pi/Jetson Nano/mini PC Raspberry Pi LCD 3D Display Raspberry Pi Pico GNSS expansion board L76K GPS Beidou (BDS) GLONASS QZSS A-GNSS For RP2040/RP2350 Raspberry Pi Robot Dog Wavego Pro 12 quadruped ESP32 ESP-NOW color recognition and self-balancing control JETSON NANO MINI Expansion Board ESP32 Thermal imaging