• sales

    +86-0755-88291180

Converting MP4 video into gif User Guide

【Mp4 to gif steps】

1.Prepare mp4 files and python scripts provided by us:


2.Open python file and check the modified source code:


3.Find the code that defines the video path and modify the path to your own video path:


4.Find the time interval code that defines the interception of mp4 frames, and modify the time interval customized for your video (as shown below, the interception start time is 1 second and the interception end time is 60 seconds):


5.Find the code that defines the size of gif, and customize the value of the modified size (the value on the left is width and the value on the right is height):


6.Find the code that defines the storage path of gif files, and modify it to your customized path and name:


7.After configuring your own parameters, click Run python file and wait for a while to generate a gif file (Note: when the file duration is too long or the gif generation is too large, the program will crash, so the time interval and picture size should be set reasonably):

python3 mp4_to_gif.py

8.Python file running effect:


【Code】

import cv2

import io

from PIL import Image, ImageOps

# Open the video file

cap = cv2.VideoCapture('./bad_apple.mp4')


# Get the total frame number and frame rate.

frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

fps = cap.get(cv2.CAP_PROP_FPS)


# Defines the time interval (in seconds) to be intercepted.

start_time = 1

end_time = 60


# Calculate the corresponding frame number interval

start_frame = int(start_time * fps)

end_frame = int(end_time * fps)


# Move to the start frame

cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame)

# Declare a memory buffer

buffer = bytearray()

images = []

# Traverse every frame in the frame number interval from the start frame.

for i in range(start_frame, end_frame):

    # Read the next frame

    ret, frame = cap.read()


    # If the frame reading fails, exit the loop.

    if not ret:

        break


    # Encode the frame into JPEG image data and store it in the memory buffer.

    _, enc_frame = cv2.imencode(".jpg", frame)

    buffer.extend(enc_frame)

    images.append(Image.open(io.BytesIO(buffer)))


    # Empty the buffer

    buffer = bytearray()


# Release the video file handle.

cap.release()

cv2.destroyAllWindows()


# Transform the picture and save it as a GIF file.

new_frames = []

for frame in images:

    frame = ImageOps.fit(frame, (256, 128), method=Image.ANTIALIAS)

    new_frames.append(frame)

new_frames[0].save('movie_new.gif', save_all=True, append_images=new_frames[1:], duration=5, loop=0)


【The effect of generating GIF files】


TAG: Jetson Orin Nano Super AI Developer Kit Built in Jetson Orin Nano 8GB Memory Core board Raspberry Pi 3.5 inch LCD F Display Capacitance TouchScreen 60fps ST7796 GT911 320x480 Also For Arduino/Pico2/ESP32/RP2040/RP2350 Raspberry Pi display Raspberry Pi HQ Camera Official Original High Quality For M12 Lenses 12.3MP IMX477 Sensor ESP32-S3 1.28inch LCD RV1103 SpotPear EPS32S3 1.8inch Round LCD Display WIFI-AIDA64-Secondary-TouchScreen/Wireless-Power/Video-Player LVGL 1.54 inch Passive NFC e-Paper BW Display E-ink Screen No Need Battery Wireless Powered & Data Transfer Raspberry Pi 5 27W Power Raspberry Pi 5 DSI display Raspberry Pi Prism Sipeed-Lichee-Tang-Nano-FPGA-Series-IDE-Install 3.52 inch e-Paper HAT B E Ink Red/Black/White 360x240 Screen Display For Arduino /Raspberry Pi /Jetson Nano /STM32 Arduino 0.96inch RGB OLED DeepSeek AI Voice Chat ESP32 S3 Development Board 1.8 inch AMOLED Display 368×448 1.8inch TouchScreen Programmable Watch QMI8658 /MIC /Audio /Battery Raspberry Pi 5 27W UART To WiFi Computer Desktop Monitor Display WiFi Wireless ESP32 DDSM Motor Driver HAT For Direct Drive Servo Hub Motors For Raspberry Pi