• sales

    +86-0755-88291180

2.7inch e-Paper HAT (B)

Introduction


Note:
 The raw panel require a driver board, If you are the first time use this e-Paper, we recommend you to buy the HAT version or buy more one driver hat for easy use, otherwise you need to make the driver board yourself. And this instruction is based on the version with PCB or driver board.

264x176, 2.7inch E-Ink display HAT for Raspberry Pi, three-color


Interfaces


VCC3.3V
GNDGND
DINSPI MOSI
CLKSPI SCK
CSSPI chip select (Low active)
DCData/Command control pin (High for data, and low for command)
RSTExternal reset pin (Low for reset)
BUSYBusy state output pin (Low for busy)


Working principle


Introduction


This product is an E-paper device adopting the image display technology of Microencapsulated Electrophoretic Display, MED. The initial approach is to create tiny spheres, in which the charged color pigments are suspending in the transparent oil and would move depending on the electronic charge. The E-paper screen display patterns by reflecting the ambient light, so it has no background light requirement. Under sunshine, the E-paper screen still has high visibility with a wide viewing angle of 180 degree. It is the ideal choice for E-reading.


Communication protocol






Note: Different from the traditional SPI protocol, the data line from the slave to the master is hidden since the device only has display requirement.

  • CS is slave chip select, when CS is low, the chip is enabled.
  • DC is data/command control pin, when DC = 0, write command, when DC = 1, write data.
  • SCLK is the SPI communication clock.
  • SDIN is the data line from the master to the slave in SPI communication.

SPI communication has data transfer timing, which is combined by CPHA and CPOL.

  1. CPOL determines the level of the serial synchronous clock at idle state. When CPOL = 0, the level is Low. However, CPOL has little effect to the transmission.
  2. CPHA determines whether data is collected at the first clock edge or at the second clock edge of serial synchronous clock; when CPHL = 0, data is collected at the first clock edge.
  • There are 4 SPI communication modes. SPI0 is commonly used, in which CPHL = 0, CPOL = 0.

As you can see from the figure above, data transmission starts at the first falling edge of SCLK, and 8 bits of data are transferred in one clock cycle. In here, SPI0 is in used, and data is transferred by bits, MSB first.


TAG: SP3232EEN ESP32 ST7789 Horizontal Drag Instructions Industrial Modbus RS485 RTU 8-ch Magnetic Latching Relay Module (C) With Digital Input Raspberry Pi Prism IMX462 Jetson Orin NX Spotpear 2.13 inch Passive NFC e-Paper ink (G) RYBW Display Screen No Need Battery Wireless Power & Data Transfer Raspberry Pi Pico 2 W RP2350 Pico2W ARM Cortex-M33 And RISC-V Hazard3 Wi-Fi4 Bluetooth5.2 CYW43439 Raspberry Pi RTC WatchDog HAT (B) RV1103 Autofocus Camera ESP32-P4 Module Core Board PSRAM 32MB Flash 16MB N16R32 Onboard ESP32-C6 Raspberry Pi ZERO ESP32-P4 DEV-KIT C6 WiFi6 MIPI DSI 7/10.1 inch Display/CSI Camera/Audio Speaker For AI Deepseek R7FA4 PLUS B Development Board Based on R7FA4M1AB3CFM Compatible with Arduino UNO For R4 WiFi MP2.5G Raspberry Pi 5 PCIe to 2.5G Ethernet HAT Pi5 RTL8125 SpotPear ESP32 desktop trinket