• sales

    +86-0755-88291180

2.7inch e-Paper HAT

Introduction


Note:
 The raw panel require a driver board, If you are the first time use this e-Paper, we recommend you to buy the HAT version or buy more one driver hat for easy use, otherwise you need to make the driver board yourself. And this instruction is based on the version with PCB or driver board.

264x176, 2.7inch E-Ink display HAT for Raspberry Pi, SPI interface


Interfaces

VCC3.3V
GNDGND
DINSPI MOSI
CLKSPI SCK
CSSPI chip select (Low active)
DCData/Command control pin (High for data, and low for command)
RSTExternal reset pin (Low for reset)
BUSYBusy state output pin (Low for busy)


Working principle


Introduction


This product is an E-paper device adopting the image display technology of Microencapsulated Electrophoretic Display, MED. The initial approach is to create tiny spheres, in which the charged color pigments are suspending in the transparent oil and would move depending on the electronic charge. The E-paper screen display patterns by reflecting the ambient light, so it has no background light requirement. Under sunshine, the E-paper screen still has high visibility with a wide viewing angle of 180 degree. It is the ideal choice for E-reading.


Communication protocol




Note: Different from the traditional SPI protocol, the data line from the slave to the master is hidden since the device only has display requirement.

  • CS is slave chip select, when CS is low, the chip is enabled.
  • DC is data/command control pin, when DC = 0, write command, when DC = 1, write data.
  • SCLK is the SPI communication clock.
  • SDIN is the data line from the master to the slave in SPI communication.

SPI communication has data transfer timing, which is combined by CPHA and CPOL.

  1. CPOL determines the level of the serial synchronous clock at idle state. When CPOL = 0, the level is Low. However, CPOL has little effect to the transmission.
  2. CPHA determines whether data is collected at the first clock edge or at the second clock edge of serial synchronous clock; when CPHL = 0, data is collected at the first clock edge.
  • There are 4 SPI communication modes. SPI0 is commonly used, in which CPHL = 0, CPOL = 0.

As you can see from the figure above, data transmission starts at the first falling edge of SCLK, and 8 bits of data are transferred in one clock cycle. In here, SPI0 is in used, and data is transferred by bits, MSB first.

TAG: ESP32-S3 Relay 6-Channel IOT WiFi Bluetooth RS485 Pico Protection Circuits Pi5 Fan STM32 1.5inch LCD Raspberry Pi 5 Rounded LCD Spotpear Raspberry Pi 5 Pure-Copper Cooler Raspberry Pi 5 Gen3 Milk-V Duo RJ45 ESP32-P4 Smart 86 TV Box Development Board 4 inch 720x720 Display TouchScreen RS485 Relay Camera RJ45 ETH AI Machine Vision Kit OAK-D-POE JPEG Encoder 12MP IP67 Waterproof 4TOPS OpenCV Camera Aluminum Heatsink Raspberry Pi Autofocus Camera Raspberry Pi 5 Case ESP32-S3 1.28inch LCD ESP32 S3 LCD Development Board 1.3 inch Display 1.3inch Screen ST7789 240x240 Mini TV SD-Port QST QMI8658 Gyro Sensor LVGL For Arduino Arducam 64MP Camera Raspberry Pi 0.85inch LCD EG25-G Mini PCIe SIMCom Original 4G LTE Cat-4 Module Global Coverage GNSS PCI Express Mini Card Raspberry Pi 3.5 inch LCD F Display Capacitance TouchScreen 60fps ST7796 GT911 320x480 Also For Arduino/Pico2/ESP32/RP2040/RP2350