• sales

    +86-0755-88291180

Converting MP4 video into gif User Guide

【Mp4 to gif steps】

1.Prepare mp4 files and python scripts provided by us:


2.Open python file and check the modified source code:


3.Find the code that defines the video path and modify the path to your own video path:


4.Find the time interval code that defines the interception of mp4 frames, and modify the time interval customized for your video (as shown below, the interception start time is 1 second and the interception end time is 60 seconds):


5.Find the code that defines the size of gif, and customize the value of the modified size (the value on the left is width and the value on the right is height):


6.Find the code that defines the storage path of gif files, and modify it to your customized path and name:


7.After configuring your own parameters, click Run python file and wait for a while to generate a gif file (Note: when the file duration is too long or the gif generation is too large, the program will crash, so the time interval and picture size should be set reasonably):

python3 mp4_to_gif.py

8.Python file running effect:


【Code】

import cv2

import io

from PIL import Image, ImageOps

# Open the video file

cap = cv2.VideoCapture('./bad_apple.mp4')


# Get the total frame number and frame rate.

frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

fps = cap.get(cv2.CAP_PROP_FPS)


# Defines the time interval (in seconds) to be intercepted.

start_time = 1

end_time = 60


# Calculate the corresponding frame number interval

start_frame = int(start_time * fps)

end_frame = int(end_time * fps)


# Move to the start frame

cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame)

# Declare a memory buffer

buffer = bytearray()

images = []

# Traverse every frame in the frame number interval from the start frame.

for i in range(start_frame, end_frame):

    # Read the next frame

    ret, frame = cap.read()


    # If the frame reading fails, exit the loop.

    if not ret:

        break


    # Encode the frame into JPEG image data and store it in the memory buffer.

    _, enc_frame = cv2.imencode(".jpg", frame)

    buffer.extend(enc_frame)

    images.append(Image.open(io.BytesIO(buffer)))


    # Empty the buffer

    buffer = bytearray()


# Release the video file handle.

cap.release()

cv2.destroyAllWindows()


# Transform the picture and save it as a GIF file.

new_frames = []

for frame in images:

    frame = ImageOps.fit(frame, (256, 128), method=Image.ANTIALIAS)

    new_frames.append(frame)

new_frames[0].save('movie_new.gif', save_all=True, append_images=new_frames[1:], duration=5, loop=0)


【The effect of generating GIF files】


TAG: Milk-V Duo S Usage of USB Type A interface Raspberry Pi 500 (US) refined personal computer.built into a high-quality Keyboard RV1106 Raspberry Pi 0.96inch LCD ESP32 ST7789 Industrial USB HUB USB3.2 Gen1 One-To-4U Onboard 7~36V DC power port For Multi Systems Raspberry Pi USB To CAN X1200 Raspberry Pi 5 UPS Board Uninterruptible Power Supply For 18650-Li-Battery (NOT includ) ESP32 S3 Development Board 2.8 inch Round LCD Display 480x480 QMI8658 Sensor / SD /MP3 Audio /Battery Port LVGL/HMI For Arduino RP204 0.85inch LCD CAN Analyzer ESP32 IR Thermal Imaging Camera ESP32 C3 1.44inch LCD Raspberry Pi DSI display Raspberry Pi Pico 2 RP2350 1.43 inch AMOLED TouchScreen Development Board 466x466 1.43inch Display QMI8658 6-Axis | PCF85063 RTC | SD | Battery Port Laser 450nm 5W high precision module Adjustable focal length For Laser Carving / Laser 3D Printing GPU Monitor Display 3.4inch Round LCD HDMI Capacitive Touchscreen Display 800x800 For Raspberry Pi/Jetson Nano/mini PC Integrated capacitive fingerprint module Cortex core UART serial port High-precision fingerprint recognition