• sales

    +86-0755-88291180

5.83inch e-Paper HAT User Guide

Introduction

Note: The raw panel require a driver board, If you are the first time use this e-Paper, we recommend you to buy the HAT version or buy more one driver hat for easy use, otherwise you need to make the driver board yourself. And this instruction is based on the version with PCB or driver board.

600x448, 5.83inch E-Ink display HAT for Raspberry Pi, SPI interface

Interfaces

VCC3.3V
GNDGND
DINSPI MOSI
CLKSPI SCK
CSSPI chip select (Low active)
DCData/Command control pin (High for data, and low for command)
RSTExternal reset pin (Low for reset)
BUSYBusy state output pin (Low for busy)

Working principle

Introduction

This product is an E-paper device adopting the image display technology of Microencapsulated Electrophoretic Display, MED. The initial approach is to create tiny spheres, in which the charged color pigments are suspending in the transparent oil and would move depending on the electronic charge. The E-paper screen display patterns by reflecting the ambient light, so it has no background light requirement. Under ambient light, the E-paper screen still has high visibility with a wide viewing angle of 180 degrees. It is the ideal choice for E-reading. (Note that the e-Paper cannot support updating directly under sunlight)

Communication protocol


Note: Different from the traditional SPI protocol, the data line from the slave to the master is hidden since the device only has display requirement.

  • CS is slave chip select, when CS is low, the chip is enabled.
  • DC is data/command control pin, when DC = 0, write command, when DC = 1, write data.
  • SCLK is the SPI communication clock.
  • SDIN is the data line from the master to the slave in SPI communication.

SPI communication has data transfer timing, which is combined by CPHA and CPOL.

  1. CPOL determines the level of the serial synchronous clock at idle state. When CPOL = 0, the level is Low. However, CPOL has little effect to the transmission.
  2. CPHA determines whether data is collected at the first clock edge or at the second clock edge of serial synchronous clock; when CPHL = 0, data is collected at the first clock edge.
  • There are 4 SPI communication modes. SPI0 is commonly used, in which CPHL = 0, CPOL = 0.

As you can see from the figure above, data transmission starts at the first falling edge of SCLK, and 8 bits of data are transferred in one clock cycle. In here, SPI0 is in used, and data is transferred by bits, MSB first.

TAG: ESP32-S3FH4R2 Matrix 8x8 RGB-LED-WiFi Bluetooth QST Attitude Gyro Sensor QMI8658C Arduino Python Computer Desktop Monitor Display ADXL354C Dev Board Magnetic Encoder Servo Motor 85KG.CM 12V/24V 360° RS485 High Precision And Large Torque Jetson Nano Development Board Raspberry Pi Compute Module 5 CM5 Cortex A76 BCM2712 With/Without Wi-Fi RAM 2/4/8/16GB eMMC Lite/8/16/32/64GB Bus servo driver board Raspberry Pi 5 Serial Raspberry Pi LCD 3D Display ESP32 C3 1.44inch LCD Raspberry Pi 5 8 inch DSI LCD Captive TouchScreen MIPI Display 1280x800 Industrial One-Body Tablet PC With 5MP Front Camera Screen Electronic EYE 0.71 inch Round Double LCD Display Dual Screen For Arduino Raspberry Pi ESP32 Pico STM32 ESP32-C3FN4 Milk V Duo UART ESP32 2 inch Capacitive TouchScreen LCD Display ST7789 CST816D 240x320 For Arduino/Raspberry Pi/Pico Type-C Power Adapter Raspberry Pi 5 Official Case SpotPear Raspberry Pi Game